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Abstract—Cellular network positioning is a mandatory requirement for localizing emergency callers, such as E911 in North America.
Although smartphones are normally equipped with GPS modules, there are still a large number of users with cell phones only as basic
devices, and GPS could be ineffective in urban canyon environments. To this end, the RF fingerprints based positioning mechanism
is incorporated into LTE architecture by 3GPP, where the major challenge is to collect geo-tagged RF fingerprints in vast areas. This
paper proposes to utilize the subspace identification approach for large-scale RF fingerprints prediction. We formulate the problem
into the problem of finding the optimal subspace over Stiefel manifold, and redesign the Stiefel-manifold optimization method with fast
convergence rate. Moreover, we propose a sliding window mechanism for the practical large-scale fingerprints prediction scenario,
where recorded fingerprints are unevenly distributed in the vast area. Combining the two proposed mechanisms enables an efficient
method of large-scale fingerprints prediction in the city level. Further, we validate our theoretical analysis and proposed mechanisms
by conducting experiments with real mobile data, which shows that the resulted localization accuracy and reliability with our predicted
fingerprints exceed the requirement of E911.

Index Terms—RF Fingerprints prediction, localization, Stiefel manifold
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1 INTRODUCTION

C ELLULAR network positioning is mainly driven by the gov-
ernments’ mandatory requirement for operators to localize

the caller in emergency situations, such as E911 in North Amer-
ica and E112 in Europe [1]–[3]. This is because most of the
emergency callers (e.g., 60% in the Europe Union in 2013 [4],
[5]) are unable to provide their current positions accurately. To
this end, the 3rd Generation Partnership Project (3GPP) has made
the positioning methods such as Cell ID (CID) mandatory since
Release 8 [6], and specified the architecture of fingerprinting
based positioning for LTE networks in Release 9 [7]. The po-
sitioning capability also can be leveraged for network planning,
troubleshooting [13], and location based services such as event
recommendation and location-aware advertising [2], [8], [14].

The past decades have witnessed a large body of work devoted
to indoor positioning [9]–[12], [21], where it is largely believed
that the global navigation satellite system (GNSS) such as GPS
has satisfied the need of localization in outdoor spaces; however,
the fact is that solely relying on GNSS is unable to meet the
positioning requirement of E911 or E112 even in outdoor spaces.
First, a large number of mobile devices without GPS functionality
still remain in use. It is found that more than 90% of Americans
have cell phones, but the smartphone adoption level is only 77%
in 2017, and the level for the group of senior Americans (60+) is
merely around 42% [24]. Second, even for those smartphone users,
it has been verified in the operator’s practice that the performance
of GPS is unacceptable in urban canyon environments. Some
locations of such kind are unable to have a single satellite visible,
and a notable of locations have less than 3 satellites visible, which
is the basic requirement for GPS localization [2], [5], [8].
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Although not 100% adopted, considerable widespread use of
smartphones with the GPS module can facilitate fingerprinting
based localization, which particularly suits cellular networks [13],
[14], [17]–[20], [22], [23]. LTE smartphones regularly report the
user measurement data (UMD) to the database at the network
edge in the network control and management process [2], [5]–
[7], [13], [14], [17], where the RF measurements contained in
the UMD such as the reference signal received power (RSRP)
can be regarded as a kind of wireless fingerprint of the observed
location. Leveraging the natural process, the network operator can
construct a comprehensive and up-to-date fingerprints database
in a crowdsourcing manner [13]. As the basic mobile device
still needs to report the RSRP to the network periodically, then
the device’s current location can be estimated by comparing the
reported RSRP with the fingerprints database.

However, the challenge for fingerprinting localization in the
cellular network is that vast areas still need to be surveyed.
The regular UMD contains no GPS location information if some
special software is not installed in the user’s mobile device [13],
[14]; therefore, the war-driving method is still needed to geo-tag
the UMD [14], [17]. The expensive war-driving process motivates
the idea of fingerprints prediction based on the particular radio
propagation model [17]; the mobile trajectory tracking method is
also utilized to match a time series of the UMD to a route [14],
[15], [18], so that the location information of the continuously-
tracked UMD can be derived. While such interesting ideas can
be helpful handling particular cases, a systematical approach to
performing large-scale outdoor fingerprints prediction in the city
level is still an open issue.

In this paper, we propose a large-scale fingerprints prediction
approach to facilitate cellular network positioning, where we
redesign the subspace identification mechanism to fully exploit the
intrinsic connections among RF fingerprints. Our contributions are
as following:

First, we formulate the fingerprints prediction problem into the
problem of finding the optimal subspace over the Stiefel manifold
[25], and propose a streamlined Stiefel-manifold optimization
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algorithm for fingerprints prediction. The d-dimensional Stiefel
manifold is the set of all orthogonal d linearly independent vectors
in the m-dimensional space, where each element in the set can
span a d-dimensional subspace. The basic idea of the classic
Stiefel-manifold optimization algorithm is similar to the gradient
descent method, where the difference is that the decision variable
of the former lies in the Stiefel manifold instead of the real number
domain. We streamline the classic Stiefel-manifold optimization
algorithm to accommodate the characteristics of fingerprints pre-
diction (§Section 4.1), and prove convergence of the proposed
algorithm (§Section 4.2); moreover, we reveal the fundamental
reason why our design converges faster than an alternative ap-
proach to optimizing decision variables over Grassmann manifold
[35]–[37].

Second, we propose a dynamic sliding window mechanism to
deal with the practical fingerprints prediction scenario, where the
fingerprints are unevenly distributed in the vast area. The proposed
mechanism scans the entire area multiple times with a sliding
window, where the window size increases in each new round of
scanning as the predicted fingerprints obtained in the previous
round increase the density of available fingerprints (§Section 5.1).
The mechanism is highly efficient for completing fingerprints
prediction over 69.8km2 area within 7 rounds of scanning. The
crux of the mechanism design is to determine the dimension
of the subspace d for the matrix in the sliding window. We
propose to sample a complete sub-matrix in each window matrix,
and determine d through applying singular value decomposition
(SVD) to the sub-matrix; we theoretically prove that the subspace
dimension determination method incurs tractable information loss
(§Section 5.2).

Third, we validate our theoretical analysis and proposed mech-
anism with a real data set, which contains around 8, 820, 000
RSRP data records collected from a 69.8 km2 area in a city.
Our experimental results show that the proposed scheme pro-
vides satisfactory accuracy of fingerprints prediction. We con-
duct positioning experiments with the predicted data, and the
results show that the user can be localized in the 100m and
300m neighborhood of the real location at 70.8% and 98.67%
respectively, which exceeds the E911 network based localization
requirement regulated by the federal communication comission
(FCC): “within 100m for 67% and 300m for 90%” (§Section
6.3). Moreover, the results verify that the proposed streamlined
Stiefel-manifold optimization algorithm converges faster than the
Grassmann manifold alternative (§Section 6.4).

2 RELATED WORK

Multiple mechanisms are supported by the LTE network position-
ing architecture of 3GPP [6], [7] including CID, TOA, TDoA and
fingerprinting, among which the fingerprinting approach draws
much attention in the research community; because the CID
performance is highly dependent on the density of the BS, and
the information in the practical UMD can be insufficient for TOA
and TDOA [13], [14], [17]–[20], [22], [23].

The 3GPP specifies the architecture of fingerprinting based
positioning for LTE networks in Release 9 [7], as illustrated
in Fig. 1. The LTE positioning architecture contains three main
elements: the location service client (LCS), the location server,
and the target device. Normally, the dedicated program is installed
in the target device, which reports measurements or location of the
device itself to the location server. The location server processes

request from the LCS, which not only collects measurements and
other location information from the device and eNBs, but also
provides assisting measurements information for the target device
to estimate its position. The LCS could send the network initiated
location request for emergency positioning, where the network
instructs the target device to provide the position with unsolicited
assistance data; the LCS could also send the mobile terminated
location request for positioning the target device, which contains
privacy features and can be rejected by the target device. The
target device also could actively send mobile originated location
request, which is relayed by the MME to the location server.
The positioning data can be carried by both the control plane
and the data plane protocols, where the LTE positioning protocol,
LPP Annex protocol and SUPL 2.0 protocol are developed for the
purpose.
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Fig. 1. Fingerprinting localization architecture in the LTE network.

The major challenge for fingerprinting positioning in the
cellular network is to construct a wide-area radio map. Margolies
et al. develop a fingerprinting based cellular network positioning
testbed, where the radio map is constructed with crowdsourced
data from 4 million unique users whose mobile devices are
installed with a proprietary software [13]. Comprehensive eval-
uations are performed with the testbed, but there are still wide
areas not covered by the crowd workers. Ray et al. utilize the user
mobility to derive the location information of the continuously
sampled UMD by matching the UMD time series to a physical
route [14], where the predicted fingerprints are basically along
the main roads of the city. The idea of utilizing the user mobility
is also adopted by other work on cellular network measurement
[15], [18]. Chakraborty et al. propose a geo-tag method based
on Gaussian Mixture Model (GMM) [17], where the RF signal
characteristics are modeled with a Gaussian distributed random
variable.

Fingerprints prediction schemes based on matrix analysis
approaches have been applied to indoor localization systems for
saving the cost of site survey [9]–[12], which are very similar
with the scenario studied in this paper. In particular, the matrix
completion algorithms are utilized to deal with the issue. Liu et al.
model the indoor fingerprints prediction problem as a tensor com-
pletion process, where the tensor can be viewed as a 3-dimensional
matrix [9]. Gu et al. propose a novel matrix completion algorithm
combining singular value decomposition and K-Nearest Neighbors
(KNN) algorithm [9]. Nikitaki et al. focus on multi-channel indoor
fingerprinting localization system utilizing matrix theories [31].
Jain et al. design an alternating minimization approach improving
the accuracy and efficiency in matrix completion [32]. Although
also adopting the matrix completion model, our work in this paper
for the first time formulates the fingerprints prediction problem
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into a Stiefel manifold optimization problem to the best of our
knowledge.

Edelman et al. present the framework to use the gradient
descent method on the Grassmann and Stiefel manifold [25].
While the Grassmann manifold optimization problem is studied
and applied in the field of image processing and remote sensing
[35]–[37], the Stiefel manifold is under studied. Our work in
this paper redesign the original Stiefel manifold optimization
algorithm used in [25] to accommodate the fingerprints prediction
scenario, where the theoretical issues such as convergence rate
analysis and step size design are resolved in contrast to [25].

3 PROBLEM FORMULATION

3.1 Fingerprints Prediction: A Subspace Identification
Perspective
The fingerprints prediction problem can be formulated into a
matrix completion problem [9]–[12]. The area needs localization
service is first divided into grids, and the fingerprints sampled in
grids are like elements in a matrix. The purpose of fingerprints
prediction is essentially to complete the entire matrix by deriving
the unknown elements based on those available ones. A number of
mathematical tools for matrix completion are available, such as the
singular value thresholding (SVT) [26], singular value partition
(SVP) [27], forward-backward algorithm for matrix completion
(FBMC) [28] and iterative reweighted least squares (sIRLSp) [29].
Though with different implementation details, those algorithms are
generally based on singular value decomposition (SVD).

In particular, given an incomplete m×n matrix induced from
the incomplete radio map, if we assign the values of all unknown
elements to be 0s, then we have a complete radio map matrix
A = UΛV T after SVD, where U is anm×m real unitary matrix,
Λ is an m× n rectangular diagonal matrix with non-negative real
numbers on the diagonal and V T is an n×n real unitary matrix. It
is usually assumed that A is a low-rank matrix, which means that
all the column vectors in A are linearly dependent to each other;
this is based on the in-practice observation that fingerprints are
correlated within a certain area. To exploit the linear dependency,
we could keep d greatest singular values lying on the diagonal of
Λ making it a d×dmatrix, and make the corresponding parts in U
and V T m×d and d×n matrices, respectively. Then multiplying
the three parts results in a new m × n matrix Â, which contains
estimations to those unknown elements originally assigned values
of 0s in A.

The essence of the SVD method is actually to find a lower
dimensional subspace that contains all the column vector in Â.
Consider anm-dimensional space that contains all m-dimensional
column vectors in A, if most of those vectors are linearly depen-
dent with each other, then most of them should belong to a lower
dimensional subspace of the m-dimensional space. For example,
imagine that there are some points in the 3-D space, if most of the
points are linearly dependent with each other, then those points
should be in a 2-D plane or a straight line. In SVD, the residual
m×d matrix U is such a lower (d) dimensional subspace induced
by the greatest d singular vectors. If the subspace is found, then
any vector belong to the subspace are available; this is why the
unknown elements can be estimated.

The accuracy of the elements estimation is highly dependent
on whether the obtained subspace indeed contains most of the
vectors in A. There are infinite number of possible subspaces
that can be induced by A, however, the SVD method factually

always finds one specific type of the subspace, as it initializes the
incomplete elements in A by assigning them with specific values,
for example all 0s, before performing decomposition. Assigning
different values to those unknown elements yields different sub-
spaces, but there are infinite number of possible situations, which
makes SVD method unable to guarantee that the found subspace
is always optimal.

It is worth mentioning that the subspace identified by SVD
is optimal in terms of minimizing the Frobenous norm according
to the Eckart-Young Theorem [33]. In particular, if we use Ac to
denote the matrix obtained after A going through the initialization
process of the SVD method, and Ao the matrix obtained after
the entire SVD process, then ||Ac − Ao||Frobenous is minimized
according to Eckart-Young Theorem. However, this does not
conflict with our problem formulation in this paper, because our
objective is to minimize ||PΩ(A) − PΩ(Ao)|| as to be shown
in (1). Generally, depending on the method chosen for matrix
completion, the unknown elements could be completed to the
values that lead to the lower rank matrix during the initialization
process, and the initial values will be updated by an iterative pro-
cess such as the augmented Lagrange multiplier method (ALM)
for matrix completion [34]. In contrast, our approach proposed
in this paper iteratively finding the optimal subspace directly
without initializing assignments of unknown element in A. In the
following, we are to show how to find the optimal subspace in the
whole set of possible subspaces.

3.2 Problem Formulation

The fingerprints prediction problem can be formulated into the
following matrix completion problem:

min
Â

||PΩ(A)− PΩ(Â)||,

s.t. rank(Â) ≤ d,
(1)

where || · || represents any suitable norm; A is the matrix rep-
resenting the radio map. Since some elements in A have not
been measured thus unavailable, we use PΩ(A) to denote those
available fingerprints in A. The fingerprints prediction mechanism
yields Â; this is a complete estimation of A, which contains
estimations to those unmeasured fingerprints in corresponding
positions. The constraint rank(Â) ≤ d means that the estimation
Â is under the constraint of low rank, where d << n in practice.
The physical meaning of the problem is to find Â that minimizes
the deviation from the available observations denoted by PΩ(A),
given the low-rank constraint.

The j-th column of A can be regarded as an m-dimensional
vector denoted by aj , and all the column vectors are in an m-
dimensional space denoted by M . Since ajs are correlated to each
other, then we can assume that the matrix A is a rank-d matrix,
which means that all vectors of A belong to a d-dimensional
subspace of M . However, as some elements in A are unknown,
to obtain a prediction of those elements, we want to find a rank-
d matrix Ad based on the known elements in each aj . The Ad
found must be a complete matrix and Ad = UdΛdV

T
d after

SVD, where the matrix Ud contains d m-dimensional orthogonal
vectors, which can span a d-dimensional subspace of M . Finding
Ad directly could be challenging, but due to the property of the
low rank matrix, if we can find Ud, then Ad can be derived.
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The problem is now transformed into a subspace identification
problem in the following form:

min
Ud:m×d
wj :d×1

n∑
j=1

||[Udwj ]Ω − [aj ]Ω||22, (2)

where Udwj represents the column vector in Ad corresponding
to the column vector in A denoted by aj . Since aj could be
incomplete, we use [aj ]Ω to denote the available elements in
aj ; the corresponding elements in Ad is denoted by [Udwj ]Ω,
as the matrix Ad can be transformed into Ad = UdW with
W = ΛdV

T
d , where wj is the jth column of W .

The problem (2) distinguishes itself from other commonly
seen optimization problems in that the decision variable Ud is
a subspace in the form of a matrix. Recall the m-dimensional
space where all vectors of A are in, all d-tuples of orthogonal
m-dimensional vectors form a d-dimensional Stiefel manifold;
therefore, the problem becomes to find a point in the Stiefel
manifold considering the objective function in (2). This is a Stiefel
manifold optimization problem [25].

It is worth mentioning that multiple points in the Stiefel man-
ifold can possibly form the same subspace, because one subspace
may have multiple sets of basis. All those lower-dimensional sub-
spaces in the m-dimensional space form another kind of manifold
known as Grassmann manifold [35]–[37], which is to be used for
convergence proof in the discussion later. We will theoretically
prove that the convergence rate of our proposed mechanism based
on Stiefel manifold can be higher than performing optimization
over the Grassmann manifold, which especially suits fingerprints
prediction in extremely large-scale areas.

4 STREAMLINED STIEFEL MANIFOLD OPTIMIZA-
TION

4.1 Algorithm Design

The basic idea of the Stiefel manifold optimization approach is
similar to the gradient descent method, which is frequently used
in resolving optimization problems. The gradient descent method
starts with a given point on a curve representing the objective
function, and iteratively takes steps proportional to the negative
of the gradient of the function at the current point. The method
can be extended to the Stiefel manifold optimization problem
[25]; however, the practical scenario of fingerprints prediction
problem can not fit in the general framework presented in [25].
Moreover, it is not mentioned in [25] whether the approach will
converge, and how to choose important parameters to guarantee
performance, which makes it necessary to streamline the existing
Stiefel manifold optimization approach. We are to go through
the classic Stiefel-manifold optimization approach and show the
challenge to be confronted in resolving the fingerprints prediction
problem, and then present the streamlined design of the approach
for dealing with the challenges.

Challenge 1: Determine the direction of iteration. The first
step in [25] is to determine the direction of iterations, which is
realized by finding the Hessian matrixH with respect to the objec-
tive function F =

∑n
j=1 ||[Udwj ]Ω − [aj ]Ω||22, and then finding

the inverse of H . However, we find that H for the fingerprints
prediction problem may not have full rank, thus H−1 may be
unavailable. Specifically, ∂F

∂Ud
= 2

∑n
j=1([Udwj ]Ω − [aj ]Ω)wTj

is an n × d matrix; finding H needs to take the second order
derivative of F with respect to Ud, which yields an n2×d2 matrix

H =

B11 · · · B1d

...
. . .

...
Bn1 · · · Bnd

 ,
where Bij denotes an n × d submatrix. Note that there are
unavailable samples in aj , thus [Udwj ]Ω contains zero-valued
elements, which results in that there are all-zero rows in the
n × d matrix after taking the first derivative. This will further
make elements from certain Bi1 to Bid in H all zeros after taking
the second order derivative. Consequently, it is possible that H
contains all-zero rows. To this end, we propose to replace the
direction derived from H−1 with the gradient of the objective
function ∇F , where the intuition is that ∇F can also represent a
possible iteration direction.

Challenge 2: Complex objective function. The second step
is to find the common iteration equation:

Ud,t+1 = Ud,tMt +QNt,

where Q satisfies the QR decomposition of (I − Ud,tUTd,t)∇F ,
and Mt and Nt satisfy[

Mt

Nt

]
=

(
exp

(
t

[
UTd,t∇F −RT
R 0

]))[
Id
0

]
, (3)

where we replace H−1 with ∇F . However, it is noted that Ud
and wj are factually dependent to each other, since Ad = UdW
with W = ΛdV

T
d and wj is the jth column of W . Moreover,

there is a matrix exponential function in the iteration, which we
find could hinder finding the iteration equation due to the tedious
form involving infinite matrix series.

We propose to replace the original objective function with

F (Ud) = min
xj
||[Udxj ]Ω − [aj ]Ω||22, (4)

which decouples the dependence betweenUd andwj . It is straight-
forward that wj = x∗j = argminxj ||[Udxj ]Ω − [aj ]Ω||22. The
new objective function is factually the item of the summation in
the objective function in problem (2). A natural question is: will
the solution with the new objective function be the same as that
with the original objective function?

It is straightforward to verify that the second order derivative
of F (Ud) with respect to Ud is a semi-definite matrix, which
means that the new objective function is convex on Ud, thus
definitely can achieve a unique minimum value. However, the
solution for optimizing different items to make each item achieve
the minimum value may be different. Recall the nature of A that
the column vectors ajs of A fall in a d-dimensional subspace
due to their correlation. In the process of optimizing each item,
the solution must make the corresponding aj fall in the same d-
dimensional subspace. However, even if solutions of optimizing
all those items can make those ajs fall in the subspace, they
are not necessarily the same, because each solution is factually
a set of basis of the d-dimensional subspace according to the
definition of Stiefel manifold. It is possible that the solutions of
optimizing different items vary, because the subspace can have
multiple sets of basis. Nevertheless, the interesting point is that,
since each solution is a set of basis of the same subspace, then any
element vector in a given set of basis definitely can be represented
by any other set of basis. This means that if an item achieves
the minimum value, the corresponding solution can also make



1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2893278, IEEE
Transactions on Mobile Computing

TIAN et al.: RF FINGERPRINTS PREDICTION FOR CELLULAR NETWORK POSITIONING: A SUBSPACE IDENTIFICATION APPROACH 5

other items achieve the minimum value; therefore, the solution
of the transformed problem is indeed the solution of the original
problem.

Challenge 3: Obtain the common iteration equation. Based
on the revision mentioned above, we now try to obtain the
common iteration equation, which requires to perform QR de-
composition to the matrix (I − UtUTt )∇F 1.

Since ∇F = −2rtw
T
t − Ut(−2rtw

T
t )TUt = −2rtw

T
t with

rt = PΩ(Udwj − aj), we have (I − UtUTt )∇F = 2rtw
T
t with

UTt rt = 0, where wt = x∗j for the current vector aj we are
considering. This means that the rank of the matrix is 1 thus it is
impossible to perform QR decomposition to the matrix. To deal
with this challenge, we propose to replaceQR decomposition with
SVD, so that we can still obtain an orthonormal matrix Q. We
relax the constraint in the classic approach and allow the matrix
R to be singular, then we have Q = [ rt

||rt|| q2 q3 · · · qn]

and R = [2||rt||wt 0 0 · · · 0]T , where q2, q3, ...qn are
all orthonormal singular vectors and orthogonal to rt

||rt||
2. Then

we have Mt = Id and Nt = ηtR with the consequent common
iteration equation:

Ut+1 = Ut + 2ηt
rtw

T
t

||rt||||wt||
, (5)

where ηt is the step size parameter.
Challenge 4: Determine step size of iteration. Before execut-

ing the iteration, we must determine the step size first. Imagine the
subspace identification process, we can first estimate a subspace
Ut and see if the aj we are considering is in the subspace. If aj
is not in Ut, the angle between the projection of aj on Ut and
aj itself denoted by θ must be unequal to zero. Then we need to
rotate the subspace to decrease θ to find a new estimation of the
subspace. The degree of the rotation is factually the step size and it
is straightforward that the step size should just make θ = 0. Then
we continue to rotate the previously estimated subspace Ut in the
same way to make it contain other ajs, and the resulted Ut is the
subspace we are finding. More precisely, we are trying to find the
set of basis that spans a subspace containing all ajs according to
the definition of Stiefel manifold.

Let us define a d × d matrix Wt in the t-th iteration, where
Wt = [ wt

||wt|| Ct]. Note that Ct is a d × (d − 1) matrix, whose
columns are unit vectors and all orthogonal to wt

||wt|| . According to
Gram-Schmidt transformation, Ct can be turned into a new matrix
with all columns orthogonal to each other. Here we assume the
columns of Ct are orthogonal to each other for the convenience of
presentation. Multiply Wt in both sides of equation (5), we have
Ut+1Wt = UtWt + 2ηt

rt
||rt||

[
1 0 0 · · · 0

]
. The physical

meaning of such operations is to perform rotation to the estimated
subspace Ut, and the equation above can be further transformed
into Ut+1

wt

||wt|| = pt
||wt|| + 2ηt

rt
||rt|| , where ||pt|| = ||wt||. Note

that pt is the projection of aj on Ut, rt
||rt|| is a unit vector that

is orthogonal to Ut; therefore, the degree Ut to be rotated is
determined by ηt. We need to take an appropriate value of ηt
so that aj can fall in the resulted Ut+1. To this end, we should

1. Note that we use F to denote F (Ud) and Ut to denote Ud,t respectively
for the convenience of presentation, and such denotations are also to be adopted
in the following discussions.

2. Hereinafter we use || · || to represent || · ||2, the 2-norm of a vector.

have Ut+1wt//(pt+rt), i.e. ( 2ηt
||rt|| ,

1
||wt|| )//(1, 1), which results

in the step size in iteration t:

ηt =
1

2

||rt||
||wt||

. (6)

After overcoming the challenges above, we present the stream-
lined Stiefel-manifold optimization algorithm (SSOA) as in Algo-
rithm 1, where we use UΩ to denote the rows of U whose index
is in Ω.

Note that in Algorithm 1, after we obtain the optimal subspace
U , we need to predict the unavailable fingerprints. Based on the
theory of projection, we have the following lemma ensuring the
accurate prediction of fingerprints within the subspace, which
corresponds Step 12 in Algorithm 1.

Lemma 1. Assume that A is a rank-d matrix. Denote ei, i =
1, 2, ...m as the unit orthogonal basis vector in which the i-th
element is 1 while others are 0. U is the m×d matrix where each
column of A, denoted as aj , j = 1, 2, ..., n, satisfies aj ∈ R(U),
where R(U) means the range space (column space) of U . Then if
the number of sampled elements in aj , |Ωj |, is larger than d, and
UTΩj

UΩj
is invertible, we have our estimation âj = aj via

âj = U(UTΩj
UΩj )−1UTΩj

[aj ]Ωj .

Proof. Since aj ∈ R(U), then there exists a d× 1 vector cj , s.t.
aj = Ucj . Therefore those indexes of aj which are sampled
satisfy [aj ]Ωj = [Ucj ]Ωj = [U ]Ωtcj . Due to the fact that
UTΩj

UΩj is invertible, hence we have

âj = U(UTΩj
UΩj

)−1UTΩj
[aj ]Ωj

= U(UTΩj
UΩj

)−1UTΩj
UΩj

cj

= Ucj = aj .

Algorithm 1: Streamlined Stiefel-manifold Optimization
Algorithm (SSOA)

Input:
An initial column-orthonormal m× d matrix U0;
sample set Ω, m× n sample matrix PΩ(A);
maximum number of iteration T .

Output:
Estimated matrix Ad.

1: t = 0;
2: while t < T do
3: Randomly choose a column index q ∈ {1, 2, ..., n}, get

[aq]Ω;
4: wt = ([Ut]

T
Ω[Ut]Ω)−1[Ut]Ω[aq]Ω;

5: pt = Utwt;
6: rt = PΩ(aq − pt);

7: Ut+1 = Ut +
rtw

T
t

||wt||2 ;
8: t = t+ 1;
9: end while

10: U = Ut;
11: for each i ∈ {1, 2, ..., n} do
12: âi = U([U ]TΩ[U ]Ω)−1[U ]Ω[ai]Ω;
13: end for
14: Ad = [â1, â2, ..., ân].

In terms of the time complexity of Algorithm 1, note that the
main cost lies in Step 3 and Step 11, where a matrix multiplication
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costsO(nd2) and a matrix inversion costsO(d3). So the total time
complexity of Algorithm 1 is O((n+ T )nd2).

4.2 Convergence Analysis
The challenge to prove the convergence of the proposed SSOA in
Algorithm 1 is that the elements in each aj are not completely
known. In particular, recall that in problem (2) our goal is to
find the Ud that minimizes the objective function, we can claim
Algorithm 1 converges if we can indeed find the Ud, which spans
a subspace containing all vectors ajs in A, but aj is incomplete
itself.

We use βt(U,Ut) = 1 − δt(U,Ut) = 1 − |UTUt|2 as the
metric of measuring the distance between the estimated subspace
in the t-th iteration Ut and its true value U [37], where |UTUt|
means the determinant of UTUt. Recall that we assume A is
a rank-d matrix, where the subspace U contains all the vectors
in A. According to the definition, if U and Ut span the same
subspace, then βt(U,Ut) = 0; if U and Ut are orthogonal to each
other (any column in U is orthogonal to all columns in Ut), then
βt(U,Ut) = 1 meaning that U and Ut have the largest distance.

With the metric, we first prove in Lemma 2 that SSOA
converges at least as fast as Grassmann-manifold optimization
algorithm with step size ηt. Then we prove in Theorem 1 that
SSOA converges faster than Grassmann-manifold optimization
algorithm with appropriately choice of ηt. Faster convergence
rate is very meaningful especially for large-scale fingerprints
prediction.

Lemma 2. Let ηt = ||rt||
2||wt|| , then SSOA algorithm converges at

least as fast as Grassmann-manifold based mechanism.

Proof. Define Ūt = UtWt =
[
pt
||pt|| Ct

]
and Ǔt+1 = UtWt =[

qt
||wt|| Ct

]
. Since the first column of Ǔt+1 is not a unit vector,

we define Ūt+1 =
[
qt
||qt|| Ct

]
. With the step size ηt, we have

qt = pt + 2ηt
||wt||
||rt|| rt = at. Since Wt is an orthogonal matrix,

then R(Ūt) = R(Ut) and R(Ūt+1) = R(Ut+1), where R(U)
denotes the image of a matrix U , i.e., R(U) = {UA|∀A ∈
Rm×n}.

Then we define Ū = UWt =
[
at
||at|| C̄

]
, where C is a

d× (d− 1) matrix with orthonormal columns, and these columns
are all orthogonal to at

||at|| . Hence Ū is an orthogonal matrix
and R(Ū) = R(U). Then there exists an orthogonal matrix Yt
such that Ū = UYt, and δt+1

δt
=
|ŪT

t+1Ū |
2

|Ūt
T Ū |2

=
|UT

t+1U |
2

|UT
t U |2

=

|CT
t C|

2

|CT
t C|2

( ||pt||||at||
pTt at

)2 = ||at||2
||pt||2 which is the convergence rate of

the Grassmann-manifold optimization algorithm [37]. Note that
pt is the projection of at over the subspace Ut, thus the physical
meaning of the equation above means that the distance between
Ut and U decreases faster in each iteration.

Theorem 1. Denote σi(A) as the i-th largest singular value of A
and λi(A) as the i-th largest eigenvalue of A. If we set the step
size ηt such that

λ1(UTt Ut)

λ1(UTt Ut) + 4η2
t

λd(U
T
t Ut)

λ2(UTt+1Ut+1)
(1 + 2ηt

||rt||
||pt||

)2 >
||at||2

||pt||2
,

(7)
then the convergence rate of the SSOA is strictly greater than
||at||2
||pt||2 , which is known as the convergence rate of Grassmann-
manifold optimization algorithm [37].

Proof. Note that Ut+1 and Ut are not necessarily with orthonor-
mal columns with the step size ηt now. We first apply the QR
decomposition to Ut+1 and Ut denoted by Ut+1 = UQt+1Rt+1

and Ut = UQt Rt, respectively. Similar to the derivation in Lemma
2, we can derive

δt+1

δt
=
|(UQt+1)TU |2

|(UQt )TU |2
=
|R−1
t+1|2

|R−1
t |2

((pt + 2ηt
||pt||
||rt|| rt)

T at)
2

(pTt at)
2

. (8)

Note that (i) Ut+1 and Rt+1 share the same singular values
since multiplying an orthogonal matrix does not alter the sin-
gular values; (ii) Rt+1 is a diagonal matrix, thus we have
|R−1
t | = 1∏d

i=1 σi(Ut)
and |R−1

t+1| = 1∏d
i=1 σi(Ut+1)

where

σi(Ut+1) =
√
λi(UTt+1Ut+1) =

√
λi(UTt Ut + 4η2

t

wtwTt
||wt||2

),

based on the fact that UTt rt = 0. Since wtwTt is a rank-1 matrix,
with the only non-zero eigenvalue ||wt||2, therefore according to
Weyl’s inequality [40], we have

λi(U
T
t Ut + 4η2

t

wtw
T
t

||wt||2
) ≥

{
λ1(UTt Ut) + 4η2

t , i = 1;

λi−1(UTt Ut), i ≥ 2.
(9)

With Eqn. (8) and Inequality (9), it is easy to derive δt+1

δt
≥

λ1(UT
t Ut)

λ1(UT
t Ut)+4η2t

λd(UT
t Ut)

λ2(UT
t+1Ut+1)

(1 + 2ηt
||rt||
||pt|| )

2. Since RHS of the

inequality is greater than ||at||
2

||pt||2 , which is the convergence rate of
Grassmann-manifold optimization algorithm as presented in [37],
the convergence rate of Stiefel-manifold optimization algorithm is
faster. Proved.

Theorem 1 presents the general condition where SSOA out-
performs Grassmann-manifold optimization algorithm in conver-
gence rate. In fact, based on experiments on the real big datasets
in Section 6.2 we find that (i) λ1(UTt Ut) surges rapidly and
becomes much greater than λ2(UTt+1Ut+1) and λd(UTt Ut); (ii)
λd(U

T
t Ut)/λ2(UTt+1Ut+1) ∈ [c, 1] with the constant c > 0. The

verifications are illustrated in Fig. 2(a) and Fig. 2(b). Fig. 2(a)
verifies observation (i) since under different dimension of sub-
spaces (d = 10, 15, 20), we find that λ1(UTt Ut) is always greater
than λ2(UTt Ut), and as more iterations are conducted, the gap
becomes greater. Fig. 2(b) confirms observation (ii) since under
d = 10, 15, 20, the ratio λd(U

T
t Ut)/λ2(UTt+1Ut+1) is always

less than 1 and in our situation we can set c = 0.45. Meanwhile,
combining both figures we verify λ1(UTt Ut) is always greater
than λd(UTt Ut).

Therefore we present a more practical condition in Proposition
1 that can facilitate determining the step size in practice, which is
an approximation to the general Theorem 1.

Proposition 1. We set γt =
λd(UT

t Ut)

λ2(UT
t+1Ut+1)

∈ [c, 1]. If we choose

the step size ηt such that 1
2
||at||−||pt||√

c||rt||
< ηt <<

1
2σ1(Ut), then

the convergence rate of the SSOA is strictly higher than that of
Grassmann-manifold optimization algorithm.

Proof. Since λ1(UTt Ut) >> λ2(UTt+1Ut+1) = γtλd(U
T
t Ut),

we can approximate Eqn. (7) in Theorem 1 as γt(1+2ηt
||rt||
||pt|| )

2 >
||at||2
||pt||2 . Then we can easily obtain

ηt >
1

2

||at|| − ||pt||√
c||rt||

.
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(a) λ1(UTt Ut) vs λ2(UTt Ut) (b) γt =
σd(U

T
t Ut)

σ2(U
T
t+1Ut+1)

Fig. 2. Experimental verifications of observations about Theorem 1.

On the other hand, since σ1(Ut) =
√
λ1(UTt Ut)we need to

ensure that ηt << 1
2σ1(Ut) to let λ1(UT

t Ut)

λ1(UT
t Ut)+4η2t

→ 1. Thus

when 1
2
||at||−||pt||√

c||rt||
< ηt <<

1
2σ1(Ut), the convergence rate of

SSOA is higher than that of Grassmann-manifold optimization
algorithm.

Note that sometimes when ||rt|| is small enough, especially
when the algorithm is close to convergence, ||at||−||pt||√

c||rt||
>

λ1(UTt Ut). However, in this situation we just use ηt = 1
2
||rt||
||wt|| .

Combining the ways above to determine step sizes, we will show
that the convergence speed of SSOA outperforms significantly
than that of Grassmann-manifold based algorithm under real big
datasets in Section 6.2.

4.3 Discussions

The fundamental reason that the Stiefel-manifold optimization
approach converges faster than the Grassmann-manifold coun-
terpart is that the physical meaning of a point on the Stiefel-
manifold is a set of basis of a d-dimensional subspace and that
on the Grassmann-manifold is a d-dimensional subspace itself.
It is supposed that our optimization algorithm should measure
the distance between aj and the estimated set of basis in each
iteration; however, such kind of iteration will definitely incur high
computational complexity due to the finer-granularity of distance
metric. Since a set of basis can span a subspace, we use the angle
between aj and its projection on the subspace as the distance
metric in our algorithm design. In this case, the solution of our
algorithm is factually the subspace spanned by the set of basis,
instead of the particular set of basis itself the traditional Stiefel-
manifold optimization mechanism is finding. This is because a
subspace can have multiple sets of basis.

However, this means that there may exist multiple solutions
can be obtained by our proposed SSOA, and any one of the
solutions can satisfy the requirement. Recall that we transform
the objective function in the algorithm design (§Section 3.1), and
the new objective function is convex on Ud, then the situation of
optimizing over the Stiefel manifold is like that illustrated in the
right part of the Fig. 3, and the left part of the figure shows the
situation of optimizing over the Grassmann manifold. There could
be multiple solutions on the Stiefel manifold, but only one solution
on the Grassmann manifold, because a d-dimensional subspace is
just regarded as a point on the Grassmann manifold according to
the definition. Consequently, it is easier to find a solution on the
Stiefel manifold and the convergence rate is higher.

We present numerical analysis results in Fig. 4 showing the
average number of iterations for completing 500 randomly gener-
ated matrix on the Stiefel and Grassmann manifold, respectively.
The two sub-figures show the number of iterations needed to

achieve different levels of prediction accuracy (average error) for
the cases that 40% and 60% of the real data are available. It is
clear that the proposed SSOA requires less numbers of iterations
compared with the Grassmann manifold optimization algorithm.
The experimental results with the real data to be presented in
Section V-C also corroborates our analysis.

U U1,U2,U3...

Grassmann

Fig. 3. Convergence over Stiefel and Grassmann manifold.

Fig. 4. Numerical analysis to the convergence rate (Left: 40%; Right:
60%).

5 FINGERPRINTS PREDICTION WITH SLIDING
WINDOW

5.1 Sliding Window Mechanism Design

In practice, the sampled RF fingerprints for cellular networks are
unevenly distributed in the extremely vast area, as to be shown
in Section V. It is impossible to complete the matrix of the entire
area in one shot, since the sampled data are sparsely distributed
in some subareas. To deal with this issue, we can create a sliding
window to scan the entire area in a row-by-row manner, where
the crux is to determine the size of the window. In particular, we
first grid the entire area into square cells, where the edge length
of each cell is dependent on the accuracy requirement (normally
in tens of meters). We then let the sliding window cover a number
of such cells and move from left to right and top to bottom
so that the entire area can be scanned. The sliding window’s
movement step size in both horizontal and vertical direction is
randomly assigned, so that the predicted fingerprints obtained
in the window’s previous location can be utilized to predict the
fingerprints in the current area covered by the window.

Moreover, the window size must be set small enough initially
to make sure there are enough amount of data available within
the window for prediction. After a round of scanning, we have
predicted fingerprints available in some cells, which can be re-
garded as the training data thus the density of available fingerprints
increases. Then we could enlarge the window and scan the entire
area again still in a row-by-row manner. In this way, we scan the
area multiple times, so that fingerprints in most of the area can be
predicted.

Fig. 5 presents a vivid example of the sliding window mech-
anism. At the beginning, the sampled fingerprints are sparse, as
shown in the upper left of Fig. 5, so we set the size of the window
to be small, in order to predict the fingerprints just adjacent to
the samples at first. During the scanning process, the fingerprints
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are not always predictable in the window, which depends on the
sampling rate inside the window. For example, in the upper left
of Fig. 5, when the window scans to the red frame, the sampling
rate in this frame is high enough, thus the window is predictable.
The red elements inside the window are the predicted elements.
However, when the window scans to the blue and green frames, the
sampling rate is very low, thus they are not predicted in this round.
With an increasing number of elements predicted, the window
expands gradually as shown in Fig. 5, and in this way the whole
radio map will be recovered finally.

√ ×× ×√

√

Fig. 5. An example of sliding window mechanism.

The crux of the sliding window design is to determine the
window size, which is essentially to determine the dimension of
the subspace d. This is because the length and width of the sliding
window must be greater than d, or it is impossible to predict
the fingerprints in the unsampled cells. However, the challenge
is that the matrix corresponding to the sliding window itself is
incomplete. To deal with the challenge, we propose to determine
d of the sliding window matrix by sampling a complete sub-
matrix within the window. The rationale is that if the vectors
in the window matrix are correlated, the correlation should be
reflected by any sub-matrix within. The question is how good we
can predict the fingerprints in the window matrix if we determine
d in this way.

The corner stone assumption of the subspace identification
approach is that all the vectors in the window matrix denoted by
Aw is in the same subspace denoted by Ud; however, although the
fingerprints are correlated, some vectors indeed are not in Ud thus
incur prediction errors. Note that a large-valued d can decrease
such error since more vectors can be included in Ud, but requires
more elements in Aw to be available; in contrast, a small-valued
d can increase the error, but it can accommodate more-sparsely-
sampled Aw.

In particular, suppose Aw = UΛV T after SVD 3. We use
σi = Λii, i = 1, 2, ...,m (set m < n) to denote the i-th
largest singular value of Aw. Suppose we had known d, then
we approximate Aw with Ad = UdΛdV

T
d , where Ud and Vd

are the first d columns of U and V respectively, and Λd is the
sub-matrix comprised of the first d columns and rows of Λ. We

use ld =

√∑d
i=1 σ

2
i∑m

i=1 σ
2
i

to denote the remained information after the

approximation which only includes the largest d singular values

3. Note that we use U , Λ, and V to denote the SVD of window matrix in
this section for the convenience of demonstration, which is different from the
previous sections where A = UΛV T .

in Λ. The rationale is that most of the information of the matrix
lies in the largest singular values of the matrix after SVD. It is
straightforward that a greater d leads to a greater ld.

In the following discussion we will theoretically prove that the
gap between the remained information of the complete sub-matrix
we sample within the window, l̃d , and that of the whole sliding
window matrix, ld, is small enough when the correlation of the
columns of the sliding window matrix is strong. This validates that
we can determine d of the sliding window matrix by conducting
SVD on the complete sub-matrix within the window, with similar
remained information.

5.2 Remained Information Analysis
We first present some lemmas to prepare for Theorem 2, the
remained information analysis.

Lemma 3. If real numbers a, b, c, d > 0, b << a, d << c,
|a− c| ≤ ε1 and |b− d| ≤ ε2, then we have

| b
a
− d

c
| ≤ max{min{b, d}

ac
ε2,

ε1
max{a, c}

}.

Proof. This lemma can be proved in a case-by-case manner as
following:

Case 1: If b
a ≥

d
c and a ≥ c (note that now b ≥ d), then

| ba −
d
c | =

b
a −

d
c ≤

|b−d|
a ≤ ε1

a ;
Case 2: If b

a ≥
d
c , a < c and b < d, then | ba −

d
c | =

bc−ad
ac ≤

d
ac |c− a| ≤

d
acε2;

Case 3: If b
a ≥

d
c and a < c, b ≥ d, then | ba −

d
c | =

bc−ad
ac ≤

b
ac |c− a| ≤

b
acε2;

Similarly we can conduct the other 3 cases when b
a < d

c .
Combining all the 6 cases, we finish the proof.

Lemma 4. [The Hoffman-Wielandt inequality] Given two k × k
real symmetric matrices X and Y , if the eigenvalues of X are
µ1,µ2,...,µk and that of Y are ν1,ν2,...,νk, with µ1 ≥ µ2 ≥ ... ≥
µk ≥ 0, ν1 ≥ ν2 ≥ ... ≥ νk ≥ 0, then we have

∑k
i=1(µi −

νi)
2 ≤ ||X − Y ||2F .

Lemma 5. [38] If U is an orthonormal matrix and Ω is a random
set of row indexes. Then there exists a positive constant C, such
that E|| m|Ω|U

T
ΩUΩ − I|| ≤ Cm

√
logn
|Ω| max1≤k≤m ||uk|| ≤ 1 ,

where uk denotes the k-th row of U .

Lemma 6. If Â = ÃV Tp , where Vp is an n × t matrix with
orthonormal columns. Then there exists a constant C > 0, such
that E|| m|Ω| Â

T Â−ATA|| ≤ Cm
√

logn
|Ω| max1≤k≤m

||uk||||Λ||2 ≤ |||Λ||2

Proof. Note thatA = UΛV T after SVD, and Â is a sub-matrix of
A concatenated by the rows whose indices belonging to Ω. Then
we have Â = UΩΛV T , and

E|| m
|Ω|

ÂT Â−ATA||

= E|| m
|Ω|

V ΛUTΩUΩΛV T − 1

|Ω|
V ΛUTUΛV T ||

= E||V Λ(
m

|Ω|
UTΩUΩ − Im)ΛV T ||

≤ E|| m
|Ω|

UTΩUΩ − Im||||Λ||2

≤ Cm
√

log n

|Ω|
max

1≤k≤m
||uk||||Λ||2.

(10)
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The last inequality holds based on Lemma 5.

Theorem 2. We use ld and l̃d to denote the remained information
of the incomplete p× q window matrix Aw and a complete s× t
sub-matrix Ãw within, where we set p ≤ q and s ≤ t, and d
is the dimension of the subspace obtained by performing SVD to
the sub-matrix; if the linear correlation of fingerprints is strong
enough in the window matrix Aw, then |ld − l̃d| → 0.

Proof. Denote the following SVDs: Aw = UΛV T , Ãw =
Ũ Λ̃Ṽ T , Ad = UdΛdV

T
d and Ãd = ŨdΛ̃dṼ

T
d . The window

matrix Aw is highly linearly correlated, which means that almost
all the information is contained within the subspace spanned by
several principal axes while the other ones can be reasonably

neglected. Then we have
∑p

i=d+1 σ
2
i∑p

i=1 σ
2
i
→ 0. Based on Taylor’s

expansion, we obtain

ld =

√
1−

∑p
i=d+1 σ

2
i∑p

i=1 σ
2
i

≈ 1− 1

2

∑p
i=d+1 σ

2
i∑p

i=1 σ
2
i

≈ 1− 1

2

||Λ− Λd||2F
||Λ||2F

.

Similarly, l̃d ≈ 1 − 1
2
||Λ̃−Λ̃d||2F
||Λ̃||2F

, thus according to Lemma 3, we
obtain

|ld − l̃d| =
1

2
| ||Λ− Λd||2F
||Λ||2F

− ||Λ̃− Λ̃d||2F
||Λ̃||2F

|

=
1

2
| ||Λ− Λd||2F
||Λ||2F

−
p
s ||Λ̃− Λ̃d||2F

p
s ||Λ̃||

2
F

| ≤ 1

2
max{S, T},

(11)
where

S =
min{||Λ− Λd||2F ,

p
s ||Λ̃− Λ̃d||2F }

p
s ||Λ̃||

2
F ||Λ||2F

|||Λ||2F −
p

s
||Λ̃||2F |,

T =
1

max{||Λ||2F ,
p
s ||Λ̃||

2
F }
|||Λ− Λd||2F −

p

s
||Λ̃− Λ̃d||2F |.

For S, set Ăw = ÃwV
T
p , where Vp is an q × t matrix

with orthonormal columns and Ăw is an s × q matrix. Let
Z = p

s Ă
T
wĂw − ATwAw, which is an q × q matrix. Note that

(i) |||Λ||2F −
p
s ||Λ̃||

2
F | = |

∑p
i=1 σ

2
i −

p
s

∑s
i=1 σ̃

2
i |; (ii) ps Ă

T
wĂw

and ATwAw are both symmetric matrices; (iii) Ăw and Ãw share
the same singular values. Thus according to Lemma 4 and 6,

||Z||2F =

p∑
i=1

λ2
i (Z) ≥

p∑
i=1

(λi(A
T
wAw)− p

s
λi(Ă

T
wĂw))2

≥ 1

p
(

p∑
i=1

σ2
i −

p

s

s∑
i=1

σ̃2
i )2 =

1

p
|||Λ||2F −

p

s
||Λ̃||2F |2.

Then

S ≤
min{||Λ− Λd||2F ,

p
s ||Λ̃− Λ̃d||2F }

p
s ||Λ̃||

2
F

√
n. (12)

Now we focus on T . If ||Λ||2F ≥
p
s ||Λ̃||

2
F , then

T ≤ ||Λ− Λd||2F
||Λ||2F

+
p

s

||Λ̃− Λ̃d||2F
||Λ||2F

≤ ||Λ− Λd||2F
||Λ||2F

+
||Λ̃− Λ̃d||2F
||Λ̃||2F

.

(13)
Similarly, if ||Λ||2F <

p
s ||Λ̃||

2
F , we also have Inequality (13). Then

if the linear correlation of fingerprints in Aw is strong, ||Λ −
Λd||2F and ||Λ̃ − Λ̃d||2F approach zero, which makes both S and
T approach zero. According to Eqn. (11), we prove that |ld −
l̃d| → 0, which means that using Âw to estimate the subspace
dimension d for Aw does not incur much deviation in remained
information.

5.3 Sliding Window Algorithm
Now we present our sliding window algorithm as Algorithm 2.
Its input is the sampled fingerprint data set while its output is the
fully predicted fingerprint database of our target region. Algorithm
2 mainly consists of 3 loops: (i) Each round of the outermost loop
(from Line 1 to Line 20) is a complete scanning of the whole target
region with the same Aw; (ii) Each round of the intermediate
loop (from Line 4 to Line 18) represents the scanning of different
rows of A; (iii) The innermost loop (from Line 5 to Line 15)
completes the prediction of every column in the row specified by
the intermediate loop.

Algorithm 2: Sliding Window Based Fingerprint Prediction
Algorithm

Input:
Sampled matrix PΩ(A); Initial subspace dimension d0.

Output:
Estimated matrix Â.

1: while t < T do
2: Construct the scanning matrix Aw, with at rows and bt

columns. (i.e. Aw ∈ Rat×bt )
3: Set row and col as the current position of Aw

(represented by an element in A at (row,col)).
4: while Aw has not scanned all the rows of A do
5: while Aw has not scanned all the columns in current

row do
6: Scan a row, check whether the current scanning

matrix satisfies conditions in Lemma 7.
7: if conditions in Lemma 7 hold then
8: Conduct SSOA on Aw, and obtain the estimation

Ãw.
9: end if

10: if Some of the elements in Ãw are not in reasonable
range then

11: Set these elements as 0.
12: end if
13: Set τc as a random real number in (0, 1).
14: Update col← col + τcbt.
15: end while
16: Set τr as a random real number in (0, 1).
17: Update row ← row + τrat.
18: end while
19: Update at+1, bt+1 and dt+1 from at, bt and dt.
20: end while

There are several important details required for further expla-
nation: First, in Line 6 we need to check whether the scanning
window Aw can be predicted. We give the following Lemma 7
to show the conditions under which prediction by SSOA in Aw
will be more likely to be reasonable. Secondly, in Line 13 to
14 and Line 16 to 17, we set two random real numbers τc and
τr . The goal of this setting is to guarantee the sliding window
scanning the whole target region while not to lead to much higher
time complexity: Setting τc and τr larger than 1 will leave some
columns and rows unscanned, while adding col and row one by
one cost too much time.

Now we give Lemma 7 and its proof in detail.

Lemma 7. Assume that Aw is of rank d. Set Aw with at rows
and bt columns (here we set at ≤ bt), and in the i-th column of
Aw there are mi unsampled fingerprints. Set d as the dimension
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of the subspace. Then the prediction has finite solutions under the
following necessary conditions:

• d ≤ at and d ≤ mi,∀i;
• (at − d)(bt − d) ≥

∑bt
i=1mi.

Proof. Obviously, if d > bt, then there are no restrictions of these
bt columns since the rank of Aw is less than subspace dimension
d. So there are infinite solutions to complete missing parts inside
Aw. The same reason for the impossibility of d > at. Thus d ≤
at.

Then since Aw is of rank d, columns come from the same
d-dimensional subspace. Therefore we have the following expres-
sions based on linear algebra

xd+1 = kd+1,1x1 + kd+1,2x2 + ...+ kd+1,dxd
xd+2 = kd+2,1x1 + kd+2,2x2 + ...+ kd+2,dxd
...
xn = kn,1x1 + kn,2x2 + ...+ kn,dxd

(14)

where xi is the i-th column of Aw, and ki,j is an unknown
coefficient.

Before going further, we should note that one can easily set
another equation, for example, xd+2 = k′d+2,1x1 + k′d+2,2x2 +
...+ k′d+2,d−1xd−1 + k′d+2,d+1xd+1. However, notice that xd+1

are also linear combinations of x1 to xd, thus this newly added
equation is not an independent one, thus it brings no extra
information.

Focus on the first equation. Since there are mi unknown ele-
ments in xi, therefore in the first equation there are

∑d+1
i=1 mi + d

unknown variables. With regard to the second equation, it contains
d new coefficients and md+2 unknown elements in xd+2. Hence
the second equation adds d+md+2 new unknown variables. Like-
wise, if we add in the j-th new equation, there are md+j + d new
unknown variables. Then totally we have

∑bt
i=1mi + (bt − d)d

unknown variables.
Meanwhile, note that for each vector equation in Eqn. (14),

it contains at element-wise equations. Thus there are at(bt − d)
equations in sum.

So if at(bt − d) ≥ d(bt − d) +
∑bt
i=1mi, then the equations

have finite solutions. Here it also implies that the sampling rate
inside Aw should be at least 1− (at−d)(bt−d)

atbt
= (at+bt−d)d

atbt
.

Remark: In Lemma 7, note that we only give two necessary
conditions for Eqn. (14) having finite solutions. It can ensure finite
solutions for the prediction, but not a single determined accurate
solution. Therefore, these two conditions cannot guarantee the
absolute accuracy. However, they serve as a promotion of accuracy
since they largely eliminate unreasonable outcomes and limit the
reasonable prediction inside a finite set.

6 EXPERIMENTAL RESULTS
We do experiments with real data sampled by a network operator
in two cities, where the data sets are sampled within 48 hours,
covering 2.2 km2 and 69.8 km2 areas in the two cities and con-
taining around 60, 000 and 8, 820, 000 data records, respectively.
Each data record contains the GPS location information in terms
of latitude and longitude, the corresponding RSRP, the time the
measurement is performed, and some other irrelevant parameters.

We will first show the results with the smaller data set, in
order to verify that the proposed subspace identification approach
outperforms other frequently used matrix completion algorithms

[26]–[29]. Then we will show the results with the larger data set
to examine the performance of our proposed SSOA and dynamic
sliding window mechanism in fingerprints prediction in the large-
scale scenario. To verify our prediction mechanism, we perform
localizations with the predicted fingerprints and see if the accuracy
and reliability can meet the requirement of E911; the results are
compared with a series of algorithms in prior arts as listed in Table
1. When evaluating the localization accuracy, we use the GPS
location information as the ground truth and the localization errors
are deviations of the estimated location from the ground truth.
Moreover, we validate our theoretical result that the convergence
rate of our proposed SSOA outstrips the Grassmann approach with
similar methodology by the larger data set.

TABLE 1
Algorithms in Comparison

Algorithm Source
Cell-ID (CID) [16]

Gaussian Mixture Model (GMM) Chakraborty et al. [17]
Tensor Completion (TC) Liu et al. [9]

Sparsity Rank SVD (SRSVD) Gu et al. [30]
Bayesian Sparse Learning (BSL) Nikitaki et al. [31]

Alternate Minimization (AM) Jain et al. [32]

6.1 Experiments on Small Data Set
Overview of Fingerprints Prediction Results: We first illustrate
the fingerprints prediction results obtained by our proposed mech-
anism and then compare our mechanism with others in terms of
different metrics. The top sub-figure in the first column of Fig. 6
shows the data sampled on the main road of the target area.
This data set also contains fingerprints obtained from branches
of those main roads. We use the proposed mechanisms to predict
fingerprints on those branches, and compare the predictions with
the real data value. The distribution of RSRP fingerprints is
shown in the bottom sub-figure in the first column. The rest of
the sub-figures illustrate the process of matrix completion with
our proposed SSOA combined with the dynamic sliding window
scanning. The top sub-figure in the second column shows the
locations on those branches of the main roads where real data are
sampled. The following sub-figures show the distribution of the
completion errors in dBm after each round of scanning with the
sliding window. It can be seen from the results that the fingerprints
can be predicted, and the average error and standard deviation are
5.1dBm and 3.5dBm respectively.

Algorithms in Comparison: We compare the performance of
the SSOA with that of the following matrix completion methods:
Singular value thresholding (SVT) is a variant of SVD, where there
is a threshold τ to determine the rank of the rectangular diagonal
matrix; Singular value partition (SVP) is another variant of SVD,
which partitions available observations into subsets and perform
completion on each subset; Forward-backward algorithm for ma-
trix completion(FBMC) scheme formulates the matrix completion
problem into a convex optimization problem, with minimizing
the objective function that is a combination of completion error
and the rank of the estimated matrix; Iterative reweighted least
squares(sIRLSp) is a family of algorithms, which conducts a
least square minimization problem with the decision variable as
a matrix.

Performance Metrics: To evaluate the performance of each
mechanism, we use a subset of the whole data set to form the
training set, based on which the fingerprints in other areas will
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Fig. 6. Completion process with small data set.

be predicted, and the rest of the data form a test set denoted by
Ωtest, where the data in the set are the ground truth for testing
the predicted fingerprints. All the predicted fingerprints form a set
denoted by Ωc, but note that Ωtest and Ωc are not necessarily the
same, since we may predict fingerprints of some area that is not
surveyed by the technicians. The performance of the mechanisms
mentioned above is evaluated with metrics including ErExp(A),
ErStd(A), NSE(A) and ITR(A), where detailed definitions
are available in [41].

Prediction Performance 1: Fig. 7 shows the performance
under different proportions of real data in the test set Ωtest, which
is termed as the sampling rate. If we just use the data obtained
from the main road to perform prediction, the sampling rate is 0,
if we take 50% of the data in Ωtest out also as the training set then
the sampling rate is 50%. It is straightforward that the subspace
identification approach no matter over the Stiefel manifold or the
Grassmann manifold outperforms other mechanisms, except for
the ErStd metric. Although the subspace identification approach
results in a higher standard deviation, the expectation of the errors
ErExp(A) is smaller than that of others. This is because the real
data set itself fluctuates dramatically, but the results by other
mechanisms are unable to reflect such variation.

Prediction Performance 2: Fig. 8 shows the performance
under different ways of griding. We divide the region into cells
with different edge length, which is termed as resolution. Based
on the operator’s localization accuracy requirement, the target area
may be divided into grids with different resolutions, which in
essence is to change the size of the matrix A. In Fig. 8, the
resolution 5000 means that the target area is divided into 5000
equally-sized small cells over each edge. We only use the main-
road data as the training set to predict fingerprints in the branch
roads. The results in Fig. 8 shows that our proposed mechanisms
work well under different ways of griding.

Remark: Note that both Stiefel-manifold and Grassmann-
manifold based mechanism perform well, with faint difference
in performance metrics above. However, we will show the sig-
nificantly higher efficiency of Stiefel-manifold based mechanism
in larger data set, which coincides with its faster convergence
rate shown in Theorem 2 and promises its higher practicality in
large-scale fingerprints prediction than Grassmann-manifold based
mechanism.

6.2 Experiments on Large Data Set
Overview of Fingerprints Prediction Results: The map of the
city where the data were sampled is shown in Fig. 9(a); the
red dots on the map represent the location of the BSs. We use
fingerprints collected along the main roads of the city to predict the

fingerprints on those branching roads. The spatial distribution of
fingerprints on main road are shown in Fig. 9(b), which accounts
for only 6.7% of the whole region. After 7 iterations of sliding
window based prediction mechanism with SSOA, we obtain Fig.
9(c) shown the prediction result. The predicted region accounts
for 73.2% of the whole region, having fingerprints in most of
the locations predicted. To examine the prediction accuracy, we
compare the predicted results with the ground true, and show
corresponding error of each prediction in Fig. 9(d), where different
colors represent different levels of errors in dBm. We find that
the average and median predicting errors are 8.46 and 7.09
respectively.

Local Performance of Fingerprints Prediction: We here
show the local performance of fingerprints prediction in Fig. 9(d).
Recall that the sliding window mechanism can be viewed as a fil-
tering process to some extent, and the error could increase, which
is influenced by estimations obtained by the previous iteration.
This is actually reflected in Fig. 9(d), where it can be seen that
dots with deep color usually exist by clusters. The phenomenon
can be incurred by multiple factors when executing the sliding
window algorithm, such as the initial state of the sliding window,
the spatial distribution of samples, and the noise of samples. In the
experiments, we randomly sample a 250m× 300m sub-area over
the city region as shown in Fig. 9(d) multiple times, and examine
the prediction performance within the window each time. Then the
average and distribution of the errors can be obtained.

Figure 9(e) shows the average, maximum and minimum pre-
diction errors when we select different numbers of sub-areas to
examine. It can be found that the average predicting error (the
bars) fluctuates slightly around 8.5dBm in different number of
windows varying from 10 to 100, with the standard deviation
0.17dBm. This indicate the stability of average predicting perfor-
mance in different sub-areas. We can also see that the minimum
value is generally much closer to the average error than the
maximum value, indicating that the good predictions are more
than the bad ones. Figure 9(f) shows the cumulative distribution
function (CDF) of prediction errors. It can be seen that the CDFs
under different numbers of samplings approximately overlap with
each other, indicating that the prediction performance in each sub-
area is stable.

Positioning Results with Predicted Fingerprints: We here
validate that the predicted fingerprints can be utilized for location
estimation with the accuracy and reliability satisfying E911 re-
quirement. We first grid the entire area into 871×663 square cells
with each edge length to be 11m. As mentioned above, the data
set contains data from 611 BSs, but a number of base stations are
only observed at a couple of locations. Thus we first sort the BSs
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Fig. 7. Metrics with different sampling rates on branch roads.

Fig. 8. Metrics with different resolutions of the area.
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Fig. 9. Experimental results on 69.8km2 dataset.
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Fig. 10. Comparison of the SSOA with other matrix completion methods.

according to the frequency they are observed at all locations of
the area, and select the top 135 BSs. Then the corresponding data
account for 96% of the entire data set. To perform localization,
we choose those cells that both have the measured and the
predicted fingerprints. We construct a fingerprints database with
the predicted fingerprints, and use the real data as the user’s

reported data for localization. According to the statics of the data
set, a user’s mobile device normally can observe 1 to 12 BSs, and
our preliminary experimental results show that the localization
accuracy will be unacceptable if the user just report the fingerprint
with respect to only one BS; therefore, we just consider the cells
that can observe at least two BSs.

With our predicted fingerprints, we compare the performance
of fingerprinting localization performance with that of Cell ID
(CID) and Gaussian Mixture Model (GMM) based method [17].
The basic idea of the CID approach is to estimate the user’s
location to be the geometric center of all BSs the user can observe;
GMM method is to estimate the location of a reported fingerprint
using the GMM model constructed based on the Gaussian radio
propagation model, which also can be regarded as a method to
predict a given fingerprint’s location.

We perform localizations for around 4500 test samples by
three methods respectively. For SSOA and Gaussian mixture
method, we use the predicted fingerprints and part of the sampled
fingerprints to form a fingerprints database, and use the rest of the
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sampled fingerprints as the test set. Given some fingerprints in the
test set, we run the regular localization algorithm to estimate the
corresponding location, and the localization errors are deviations
of the estimated location from the ground truth. We draw the
CDF of localization errors for each method, as shown in Fig.
9(g). The localization error is the Euclidean distance between
the user’s estimated location and the ground truth. We use the
E911’s localization requirement benchmark to evaluate the three
localization methods, which is “within 100m for 67% and within
300m for 90%”. We can see that the fingerprinting method using
our predicted fingerprints by SSOA achieves “within 100m for
71% and within 300m for 98%”, CID method achieves “within
100m for 34% and within 300m for 93%”, and the GMM method
achieves “within 100m for 14% and within 300m for 75%”.
This is because CID’s performance is impacted by the unbalanced
distribution of BSs, and GMM’s assumption that the received
signal strength at a given location is a multivariate Gaussian
distributed random variable [17] is not always realistic especially
in urban environment with more serious shadowing and multipath
effects.

Convergence Rate: Our convergence analysis reveals that the
proposed SSOA mechanism converges faster than the Grassmann-
manifold optimization algorithm, and we now provide experimen-
tal results to validate this claim. We consider the entire area as a
giant matrix, and use 40% of the data as the training set to predict
the rest of the data. We let the SSOA and the Grassmann-manifold
optimization algorithm iterate 60, 000 times and examine the
prediction error after each iteration. The prediction error is found
by comparing the predicted data and the real data in the other
60% of the data set, and each error is represented as a point
in Fig. 9(h). It shows that the average prediction error using
SSOA reaches around 11dBm within 1000 times, while the error
using Grassmann method only reaches around 12.5dBm after
30000 times. It takes 75min for the Grassmann method to reach
12.5dBm error, while our proposed SSOA just consumes around
2min to achieve 11dBm error.

Comparison to other Matrix Completion Approaches: We
note that efforts have been dedicated to utilize matrix completion
approach for predicting RF fingerprints in the indoor environ-
ment. Although considering different localization environment,
in essence such mechanisms share some similarities with the
proposed one. We here compare performance of the following
4 such algorithms with that of the proposed approach SSOA in
the outdoor scenario: AltMinComplete minimizes the fingerprints
estimation error by optimizing the two unitary matrices in the
SVD process in an alternating manner [32]; Tensor combines
the signal values with respect to different BSs together to form
a tensor, which can be regarded as a 3-D matrix, in order to
complete those unavailable fingerprints [9]; SRSVD reduces the
possible interference in Wi-Fi signal which may incur negative
impact on fingerprints completion [30]; Bayesian sparse learning
approach conducts localization by exploiting the low-rank and
sparsity properties of the sampled signals [31].

The localization experiments are conducted in the same way
as mentioned before, and the results are shown in Fig. 10. It
can be seen that the proposed SSOA mechanism outperforms
all the other ones. AltMinComplete presents the second best
performance, closest to SSOA, because it directly optimizes the
unitary matrices in SVD; however, there is no guarantee that
the alternating optimization approach adopted can necessarily
achieve the optimum. Tensor is realized in a similar manner as

SSOA but does not directly optimize U , instead, it predicts the
subspace that U spans by randomly selecting fingerprints that are
sampled. SRSVD is a slight variation of the classical SVD-based
approach. Bayesian sparse learning considers the potential sparsity
properties of RF signals, but it relies on setting a slew of pre-
defined parameters (variation of signal, precision of measuring)
and the assumptions of signal’s Gaussian distribution, which are
not always practical in real localization scenarios thus presents the
worst performance.

7 CONCLUSION AND FUTURE WORK

This paper has proposed to utilize the subspace identification
approach to predict fingerprints in unsurveyed areas with available
fingerprints sampled in the nearby areas. We have formulated
the fingerprints prediction problem into the problem of finding
the optimal subspace over the Stiefel manifold, and proposed a
streamlined Stiefel-manifold optimization algorithm with fast con-
vergence rate for the fingerprints prediction scenario. Moreover,
we have proposed a sliding window mechanism to deal with the
practical fingerprints prediction scenario, where the fingerprints
are unevenly distributed in the vast area. Combining the two
proposed mechanisms enables an efficient method to predict large-
scale fingerprints prediction in the km2 level. Further, we have
validated our theoretical analysis and proposed mechanisms by
conducting experiments with real mobile data sets sampled in
two cities; it has been shown that the localization accuracy and
reliability exceed the requirement of E911 by FCC, moreover,
the convergence rate of the proposed mechanism outperforms the
Grassmann approach with the similar methodology. Our future
work is to apply the proposed mechanism to the indoor localiza-
tion scenario.
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